Search results
Poznaj wzór na deltę i naucz się, jak stosować go do rozwiązywania równań kwadratowych. Przewodnik zawiera teorię, wzory na x1 i x2 oraz przykładowe zadania.
Korzystając z naszego kalkulatora wartości delty wg współczynników funkcji kwadratowej, Twój zadaniem jest wprowadzić trzy liczby a, b i c, a następnie klikając oblicz sprawdzić wartość delty. Kalkulator obliczy wartość na podstawie wzoru delty i przedstawi wynik wraz z punktami x1 oraz x2 na osi x.
Równania kwadratowe można rozwiązywać trzema głównymi metodami: Metoda wyłączania przed nawias. Metoda wzorów z użyciem delty. Metoda wzorów skróconego mnożenia. Example: Rozwiązanie równania 3x² + 6x = 0 metodą wyłączania przed nawias: 3x (x + 2) = 0 x₁ = 0 lub x + 2 = 0, x₂ = -2.
Delta jest związana z miejscami zerowymi funkcji kwadratowej, a jej obliczenie pozwala na określenie, czy funkcja ma dwa miejsca zerowe, jedno miejsce zerowe lub brak miejsc zerowych. Wzór na deltę to delta = b^2 – 4ac, gdzie a, b i c to współczynniki funkcji kwadratowej w postaci f (x) = ax^2 + bx + c.
Wzór na trójmian kwadratowy: F (x) = ax2 + bx + c, gdzie a, b, c, ∈ R i a ≠ 0. Delta jest inaczej wyróżnikiem funkcji kwadratowej zapisaną za pomocą wzoru: Δ = b2 – 4ac. Wartość delty można łatwo obliczyć, korzystając z formularza obliczeniowego.
Delta nazywana jest inaczej wyróżnikiem trójmianu kwadratowego. To właśnie dzięki niej możemy obliczyć rozwiązania równania kwadratowego (o ile oczywiście istnieją!) lub wierzchołek paraboli. Poznaliście już, czym jest postać ogólna funkcji kwadratowej.
Wzór na deltę. Delta inaczej wyróżnik trójmianu kwadratowego. Mając funkcję kwadratową postaci: gdzie: a, b, c są współczynnikami funkcji kwadratowej i. Wzór na deltę wygląda następująco: Znając wartość delty możemy obliczyć miejsca zerowe funkcji kwadratowej lub wierzchołek paraboli.