Search results
Funkcja kwadratowa – wzory. Poznaj najważniejsze wzory związane z funkcją kwadratową. Postać ogólna funkcji kwadratowej: y = ax2 + bx + c. Postać kanoniczna funkcji kwadratowej: y = a(x − p)2 + q , gdzie p = −b 2a i q = −Δ 4a. Postać iloczynowa funkcji kwadratowej:
- Funkcja kwadratowa
Funkcja kwadratowa i najważniejsze zadania do sprawdzianu!...
- Monotoniczność Funkcji Kwadratowej
Określ monotoniczność funkcji kwadratowej? Zbadaj, czy...
- Dziedzina I Zbiór Wartości Funkcji Kwadratowej
Zatem zbiorem wartości tej funkcji kwadratowej jest...
- Miejsca Zerowe Funkcji Kwadratowej
Miejsca zerowe funkcji kwadratowej. 1) Jeśli masz postać...
- Nierówności kwadratowe
Krok 2. Zaznaczenie pierwiastków w układzie współrzędnych....
- Równania Kwadratowe Niezupełne
Musisz wiedzieć, że omawiane równania są stosunkowo łatwe do...
- Wykres funkcji kwadratowej
W celu naszkicowania wykresu: 1) wyznaczam miejsca zerowe...
- Definicja funkcji kwadratowej
Definicja funkcji kwadratowej. Na początku działu...
- Funkcja kwadratowa
Wzór na x1 i x2. Funkcja kwadratowa może mieć dwa miejsca zerowe, jedno miejsce zerowe bądź może mieć brak miejsc zerowych. Wszystko to zależy od tego, ile wynosi wyróżnik trójmianu kwadratowego, a więc po prostu zależy to od wartości delty.
Poziom podstawowy. W tym miejscu zebrałem wszystkie najważniejsze wzory dotyczące funkcji kwadratowej. Postać ogólna funkcji kwadratowej to: f(x) = ax2 + bx + c. gdzie a, b, c ∈R i a ≠ 0. Wyróżnik Δ (delta) trójmianu kwadratowego ax2 + bx + c, to liczba: Δ =b2 − 4ac.
Korzystając z naszego kalkulatora wartości delty wg współczynników funkcji kwadratowej, Twój zadaniem jest wprowadzić trzy liczby a, b i c, a następnie klikając oblicz sprawdzić wartość delty. Kalkulator obliczy wartość na podstawie wzoru delty i przedstawi wynik wraz z punktami x1 oraz x2 na osi x.
Dla funkcji danej w postaci ogólnej f(x) = ax2 + bx + c liczymy deltę Δ =b2 − 4ac, a następnie: Jeżeli Δ> 0, to są dwa miejsca zerowe: x1 = −b − Δ−−√ 2a i x2 = −b + Δ−−√ 2a. Jeżeli Δ = 0, to jest dokładnie jedno miejsce zerowe: x1 = x2 = − b 2a. Jeżeli Δ <0, to nie ma miejsc zerowych.
Poznaj wzór na deltę i naucz się, jak stosować go do rozwiązywania równań kwadratowych. Przewodnik zawiera teorię, wzory na x1 i x2 oraz przykładowe zadania.
Funkcja kwadratowa może być zapisana w trzech głównych postaciach: Postać ogólna: y = ax² + bx + c. Postać kanoniczna: y = a (x-p)² + q. Postać iloczynowa: y = a (x-x₁) (x-x₂) lub y = a (x-x₂)². Highlight: Postać kanoniczna funkcji kwadratowej jest szczególnie użyteczna przy określaniu wierzchołka paraboli.