Yahoo Poland Wyszukiwanie w Internecie

Search results

  1. Tablice z wartościami funkcji trygonometrycznych dla kątów ostrych znajdują się pod tym linkiem. \sin^2 {\alpha }+\cos^2 {\alpha }=1. \begin {split} &\text {tg} {\alpha }=\frac {\sin {\alpha }} {\cos {\alpha}}\\ [12pt] &\text {ctg} {\alpha}=\frac {\cos {\alpha}} {\sin {\alpha}}\\ [12pt] &\text {tg} {\alpha}\cdot \text {ctg} {\alpha=1} \end {split}

  2. Wzory matematyczne z objaśnieniami - Trygonometria: sinus i cosinus, tangens, cotangens, iloczyn tangensa i cotangensa, tangens i cosinus, cotangent i sinus, sinus sumy kątów, sinus różnicy kątów, cosinus sumy kątów, cosinus różnicy kątów, tangens sumy kątów, styczna różnicy kątów, sinus podwójnego kąta, cosinus podwójnego ...

  3. Funkcja cosinus jest określona w trójkącie prostokątnym jako stosunek przyprostokątnej przyległej i przeciwprostokątnej. Funkcja jest definiowana od −∞ do +∞ i przyjmuje wartości od −1 do 1.

  4. Rozwiązanie zadania - Wzór na cosinus kąta między wektorami. Iloczyn skalarny. Kąt prosty między wektorami.

  5. Twierdzenie cosinusów pozwala obliczyć długość boku trójkąta, w sytuacji gdy znamy długości dwóch pozostałych boków i kąt między nimi. Dla oznaczeń jak na powyższym rysunku zachodzi następujący wzór: \[c^2=a^2+b^2-2ab\cos \gamma \]

  6. cos(ax) cos(bx) = cos[(a − b)x] + cos[(a + b)x]. Podstawienie uniwersalne: W całkach trygonometrycznych możemy również wykorzystać tzw. podstawienie uniwersalne. Ponieważ. oraz cos x = .

  1. Ludzie szukają również