Yahoo Poland Wyszukiwanie w Internecie

Search results

  1. Funkcje trygonometryczne podwojonego kąta \[\begin{split} &\sin{2\alpha }=2\sin{\alpha }\cos{\alpha }=\frac{2\ \text{tg}{\alpha }}{1 +\text{tg}^2{\alpha }}\\[12pt ...

  2. Wzory matematyczne z objaśnieniami - Trygonometria: sinus i cosinus, tangens, cotangens, iloczyn tangensa i cotangensa, tangens i cosinus, cotangent i sinus, sinus sumy kątów, sinus różnicy kątów, cosinus sumy kątów, cosinus różnicy kątów, tangens sumy kątów, styczna różnicy kątów, sinus podwójnego kąta, cosinus podwójnego kąta, cosinus podwójnego kąta, cosinus ...

  3. Funkcje trygonometryczne z których korzystamy w trygonometrii na poziomie szkolnym to sinus (sin s i n), cosinus (cos c o s) oraz tangens (tg t g). Choć każda z tych funkcji jest nieco inna, to łączy je wspólny cel – każda z tych funkcji pokazuje nam jaki jest stosunek długości boków trójkąta prostokątnego względem jego miar kątów wewnętrznych.

  4. Istnieją 4 funkcje trygonometryczne: sinus, cosinus, tangens i cotangens. Funkcje te działają na kątach. Definiuje się je w trójkącie prostokątnym jako stosunki odpowiednich boków.

  5. Wzory na sinus, cosinus, tangens. Przykłady zastosowania tych wzorów. Tabela wartości funkcji trygonometrycznych dla typowych kątów.

  6. Kalkulator online oblicza wartości funkcji cosinus. Na stronach można również znaleźć wykresy i wzory dla funkcji trygonometrycznych. Nasza strona internetowa umożliwia łatwe i szybkie obliczanie.

  7. W niniejszym artykule przedstawiamy podstawowe wzory trygonometryczne, o których często mówimy także tożsamości trygonometryczne. Między funkcjami trygonometrycznymi kąta α zachodzą następujące związki (tożsamości trygonometryczne): Na podstawie twierdzenia Pitagorasa mamy: a 2 + b 2 = c 2 /: c 2. a 2 c 2 + b 2 c 2 = 1. (a c) 2 + (b c) 2 = 1.