Yahoo Poland Wyszukiwanie w Internecie

Search results

  1. Tablice z wartościami funkcji trygonometrycznych dla kątów ostrych znajdują się pod tym linkiem. \sin^2 {\alpha }+\cos^2 {\alpha }=1. \begin {split} &\text {tg} {\alpha }=\frac {\sin {\alpha }} {\cos {\alpha}}\\ [12pt] &\text {ctg} {\alpha}=\frac {\cos {\alpha}} {\sin {\alpha}}\\ [12pt] &\text {tg} {\alpha}\cdot \text {ctg} {\alpha=1} \end {split}

  2. Wzory na sinus, cosinus, tangens. Przykłady zastosowania tych wzorów. Tabela wartości funkcji trygonometrycznych dla typowych kątów.

  3. Tabele zawierają typowe wzory i tożsamości trygonometryczne takie jak jedynka trygonometryczna czy wzór na sinusa kąta połówkowego.

  4. 5 cze 2024 · Cosinus – w trójkącie prostokątnym cosinus ostrego kąta jest określany jako stosunek przyprostokątnej do hipotenizy. Tangens – to stosunek długości przeciwprostokątnej do długości przyprostokątnej. Cotangens – to stosunek długości przyprostokątnej do długości przeciwprostokątnej. Podstawowe wzory trygonometryczne:

  5. Przykład 1. Oblicz wartość \(sinα, cosα\) oraz \(tgα\). Na początek musimy obliczyć sinus kąta \(α\), czyli stosunek długości przyprostokątnej leżącej naprzeciwko kąta \(α\) oraz długości przeciwprostokątnej.

  6. (a) sin 2x+cos x= 1; (b) tgx= sinx cosx; (c) ctgx= 1 tgx; (d) tgxctgx= 1; (e) sin2x= 2sinxcosx; (f) cos2x= cos2 x sin2 x; (g) sin(x y) = sinxcosy cosxsiny; (h) cos(x y) = cosxcosy sinxsiny; (i) tg(x y) = tgx tgy 1 tgxtgy; (j) ctg(x y) = ctgxctgy 1 ctgx ctgy; (k) sinx+siny= 2sin x+y 2 cos x y 2; (l) sinx siny= 2cos x+y 2 sin x y 2; (m) cosx+cosy ...

  7. Wzory matematyczne z objaśnieniami - Trygonometria: sinus i cosinus, tangens, cotangens, iloczyn tangensa i cotangensa, tangens i cosinus, cotangent i sinus, sinus sumy kątów, sinus różnicy kątów, cosinus sumy kątów, cosinus różnicy kątów, tangens sumy kątów, styczna różnicy kątów, sinus podwójnego kąta, cosinus podwójnego ...

  1. Ludzie szukają również