Search results
The standard unit used to measure energy and work done in physics is the joule, which has the symbol J. In mechanics, 1 joule is the energy transferred when a force of 1 Newton is applied to an object and moves it through a distance of 1 meter.
Review the units of work, energy, force, and distance. Use the equations for mechanical energy and work to show what is work and what is not. Make it clear why holding something off the ground or carrying something over a level surface is not work in the scientific sense.
In physics, work represents a type of energy. Work is done when a force acts on something that undergoes a displacement from one position to another. Forces can vary as a function of position, and displacements can be along various paths between two points.
In science, work is the energy transferred to or from an object via the application of force along a displacement. In its simplest form, for a constant force aligned with the direction of motion, the work equals the product of the force strength and the distance traveled.
From the definition of work, we see that those units are force times distance. Thus, in SI units, work and energy are measured in newton-meters . A newton-meter is given the special name joule (J), and \(1 \, J = 1 \, N \cdot m = 1 \, kg \, m^2/s^2\).
Is the factor of 1/2 in the equation for kinetic energy just due to Coriolis's definition of work as force $\times$ distance?
Evaluate the work done for various forces. In physics, work is done on an object when energy is transferred to the object. In other words, work is done when a force acts on something that undergoes a displacement from one position to another.