Yahoo Poland Wyszukiwanie w Internecie

Search results

  1. Wzory trygonometryczne. Drukuj. Tablice z wartościami funkcji trygonometrycznych dla kątów ostrych znajdują się pod tym linkiem. Jedynka trygonometryczne. sin2α +cos2α = 1. Wzory na tangens i cotangens. tgα = sinα cosα ctgα = cosα sinα tgα ⋅ctgα = 1. Funkcje trygonometryczne podwojonego kąta.

  2. Oto opisy poszczególnych wzorów funkcji trygonometrycznych: 1. Wzór podwójnego kąta dla sinusoidy: \ [ \sin (2x) = 2 \sin (x) \cos (x) \] Ten wzór pozwala na wyrażenie sinusa podwójnego kąta za pomocą funkcji trygonometrycznych kąta podstawowego. 2.

  3. Lista wzorów funkcji trygonometrycznych - sinus, cosinus, tangens, cotangens. sin(x+y)=sin(x)*cos(y)+cos(x)*sin(y) sin(x-y)=sin(x)*cos(y)-cos(x)*...

  4. Oto wzory na sinus sumy kątów, cosinus sumy kątów, tangens i cotangens sumy kątów: \(\sin({\alpha+\beta})= \sin{\alpha}\cos{\beta} + \cos{\alpha}\sin{\beta}\) \( \cos({\alpha+\beta}) = \cos{\alpha}\cos{\beta}-\sin{\alpha}\sin{\beta}\)

  5. ctg (x + y) = ctgx*ctgy - 1/ ctgx + ctgy, jeżeli sinx różne od 0, siny różne od 0, sin (x + y) różne 0. Dla różnicy kątów: sin (x - y) = sinx*cosy - cosx*siny. cos (x - y) = cosx*cosy + sinx*siny. tg (x - y) = tgx - tgy/ 1 + tgx*tgy, jeśli cosx różne od 0, cosy różne od 0, cos (x - y) różne od 0.

  6. wzór na sinus podwojonego kąta: \ [\bf \sin 2x=2\sin x \cos x\] wzór na cosinus podwojonego kąta: \ [\bf \cos 2x=\cos^2 x-\sin^2 x=2\cos^2x-1=1-2\sin^2x\] Ostatnie dwa wzory są niezwykle przydatne w zadaniach dotyczących całek z funkcjami trygonometrycznymi.

  7. Przydatne wzory trygonometryczne : (a) sin 2x+cos x= 1; (b) tgx= sinx cosx; (c) ctgx= 1 tgx; (d) tgxctgx= 1; (e) sin2x= 2sinxcosx; (f) cos2x= cos2 x sin2 x; (g) sin(x y) = sinxcosy cosxsiny; (h) cos(x y) = cosxcosy sinxsiny; (i) tg(x y) = tgx tgy 1 tgxtgy; (j) ctg(x y) = ctgxctgy 1 ctgx ctgy; (k) sinx+siny= 2sin x+y 2 cos x y 2; (l) sinx siny ...

  1. Ludzie szukają również