Search results
Ridge push and slab pull are the main forces driving plate tectonics. These forces work together to move Earth's plates, shaping our planet's surface. Ridge push happens at mid-ocean ridges, while slab pull occurs at subduction zones. Understanding these forces helps explain how mountains form, why earthquakes happen, and where volcanoes appear ...
Ridge-Push Force. Let's cover a final force a subducting plate would experience, the ridge-push force. This force results from the elevation of oceanic ridges above the seafloor. This difference in height leads to pressure that 'pushes' the plate away from the ridge.
Ridge push force and slab pull are two key forces that drive tectonic plate movements. Ridge push occurs at mid-ocean ridges, where newly formed, elevated oceanic crust slides down due to gravity, while slab pull takes place at subduction zones where denser oceanic plates sink into the mantle.
21 lis 2023 · Ridge push is one of the main driving forces of plate tectonics. It refers to the pushing force that plates experience as they slide down the raised asthenosphere underneath Mid Ocean...
One side in the argument holds that the plates are only moved by the traction caused by mantle convection. The other side holds that traction plays only a minor role and that two other forces, ridge push and slab pull, are more important. Some argue that the real answer lies somewhere in between.
Ridge push is the result of gravitational forces acting on the young, raised oceanic lithosphere around mid-ocean ridges, causing it to slide down the similarly raised but weaker asthenosphere and push on lithospheric material farther from the ridges.
Ridge-push forces cause two plates to pull apart on the surface. Slab-pull forces pull the plates down. This movement of out and down is also encouraged by convection traction, or clockwise and counterclockwise currents that are present beneath the plates.