Search results
Essential Question. For which of the theorems involving parallel lines and transversals is the converse true? Exploring Converses. Work with a partner. Write the converse of each conditional statement. Draw a diagram to represent the converse. Determine whether the converse is true. Justify your conclusion.
- Proofs with Parallel Lines
Write the converse of each conditional statement. Determine...
- Proofs with Parallel Lines
Use the figure and the given information to determine which lines, if any, are parallel. Justify using. a theorem or postulate.
Write the converse of each conditional statement. Determine whether the converse is true. Justify your conclusion. Corresponding Angles Theorem. If two parallel lines are cut by a transversal, then the pairs of corresponding angles are congruent. b. Alternate Altern Interior Angles Theorem.
Geometry Unit 3 - Reasoning & Proofs w/Congruent Triangles Page 167 For # 1-3, given a ‖ b, state the postulate or theorem that justifies each conclusion. 1.
Here are some examples of pairs of lines in a coordinate plane. a. 2 x + y = 2 These lines are not parallel b. 2 x + y = 2 These lines are coincident x − y = 4 or perpendicular.
Learn how to solve proofs involving parallel lines, and see examples that walk through sample problems step-by-step for you to improve your geometry proof-writing skills.
Proofs and Postulates: Triangles and Angles Parallel Line Postulate: If 2 parallel lines are cut by a transversal, then their coresponding angles are congruent. A simple sketch can show the parallel line postulate. note: moving each point the same distance and direction will produce a parallel line (and a coresponding angle)