Search results
Proving Parallel Lines Worksheet MATH MONKS . £3 Given: Zl = Q Statements 2 clld Reasons Answers . Given: Ll = Q, all b Statements Ll = Q, allb clld Reasons Given 3 2 4 Given Vertical angles theorem Transitive property of congruence. Converse of the corresponding angles theorem. Alternate interior angles theorem Transitive property of congruence.
Independent Practice: PROOFS OF PARALLEL LINES NAME: DATE: PERIOD: Geometry Unit 3 - Reasoning & Proofs w/Congruent Triangles Page 167 For # 1-3, given a ‖ b, state the postulate or theorem that justifies each conclusion. 1. 1 is supplementary to 8 because given _____ 2.
Essential Question. For which of the theorems involving parallel lines and transversals is the converse true? Exploring Converses. Work with a partner. Write the converse of each conditional statement. Draw a diagram to represent the converse. Determine whether the converse is true. Justify your conclusion.
1. If two lines are cut by a transversal so that alternate interior angles are (congruent, supplementary, complementary), then the lines are parallel. 2. If two lines are cut by a transversal so that same-side interior angles are (congruent, supplementary, complementary), then the lines are parallel. 3. If two lines are cut by a transversal so ...
PARALLEL LINE PROOFS. Peel & Stick Activity! Objective: To practice completing parallel line proofs. Reasons included: Definition of Congruence, Definition of Angle Bisector, Definition of Supplementary Angles, Congruent Supplements Theorem, Angle Addition Postulate, Subtraction Property of Equality, Substitution Property, Transitive Property, ...
Write the converse of each conditional statement. Determine whether the converse is true. Justify your conclusion. Corresponding Angles Theorem. If two parallel lines are cut by a transversal, then the pairs of corresponding angles are congruent. b. Alternate Altern Interior Angles Theorem.
Proving Lines Parallel 1. The Converse of the Corresponding Angles Postulate states that if two coplanar lines are cut by a transversal so that a pair of corresponding angles is congruent, then the two lines are parallel. Use the figure for Exercises 2 and 3. Given the information in each exercise, state the reason why lines b and c are parallel.