Search results
Essential Question. For which of the theorems involving parallel lines and transversals is the converse true? Exploring Converses. Work with a partner. Write the converse of each conditional statement. Draw a diagram to represent the converse. Determine whether the converse is true. Justify your conclusion.
- Proofs with Parallel Lines
I can prove theorems about identifying parallel lines....
- Proofs with Parallel Lines
1. If two lines are cut by a transversal so that alternate interior angles are (congruent, supplementary, complementary), then the lines are parallel. 2. If two lines are cut by a transversal so that same-side interior angles are (congruent, supplementary, complementary), then the lines are parallel. 3. If two lines are cut by a transversal so ...
I can prove theorems about identifying parallel lines. EXPLORE IT Determining Whether Converses Are True. Math Practice. Construct Arguments. When the converse of one of the statements is true, what can you conclude about the inverse? inverse? Work with a partner. Write the converse of each conditional statement.
GOAL 1. Prove that two lines are parallel. re parallel. You can use the following postulate and theorems to p. GOAL 2 Use properties of lines are parallel. parallel lines to solve real-life problems, such as proving that prehistoric mounds are parallel in Ex. 19. Why you should learn it. n Exa.
Geometry Unit 3 - Reasoning & Proofs w/Congruent Triangles Page 167 For # 1-3, given a ‖ b, state the postulate or theorem that justifies each conclusion. 1.
Proofs and Postulates: Triangles and Angles Parallel Line Postulate: If 2 parallel lines are cut by a transversal, then their coresponding angles are congruent. A simple sketch can show the parallel line postulate. note: moving each point the same distance and direction will produce a parallel line (and a coresponding angle)
Theorem 2.3.2: If two lines are cut by a transversal so that interior angles are congruent, then these lines are parallel. t 1 l 3 2 m Given: lines l and m and transversal t 2 3 Prove: l || m