Search results
W dzisiejszym filmie nauczymy się obliczać miejsca zerowe funkcji kwadratowej za pomocą delty. Poznamy wzór na deltę i o czym delta nam mówi. Delta jest jedn...
Korzystając z naszego kalkulatora wartości delty wg współczynników funkcji kwadratowej, Twój zadaniem jest wprowadzić trzy liczby a, b i c, a następnie klikając oblicz sprawdzić wartość delty. Kalkulator obliczy wartość na podstawie wzoru delty i przedstawi wynik wraz z punktami x1 oraz x2 na osi x.
Poznaj wzór na deltę i naucz się, jak stosować go do rozwiązywania równań kwadratowych. Przewodnik zawiera teorię, wzory na x1 i x2 oraz przykładowe zadania.
Wzór na deltę. Delta nazywana jest inaczej wyróżnikiem trójmianu kwadratowego. To właśnie dzięki niej możemy obliczyć rozwiązania równania kwadratowego (o ile oczywiście istnieją!) lub wierzchołek paraboli. Poznaliście już, czym jest postać ogólna funkcji kwadratowej.
Z tego filmu dowiesz się: jak wyprowadza się wzór na deltę, jak rozwiązuje się równania kwadratowe zapisane w postaci ogólnej.
Wzór na deltę jest następujący: = b2 −4⋅ a⋅c = b 2 − 4 ⋅ a ⋅ c. Delta służy najczęściej, żeby obliczać miejsca zerowe albo. wierzchołek funkcji kwadratowej. Przykład. Funkcja f jest określona wzorem f (x) =7x2 +2x−4 f (x) = 7 x 2 + 2 x − 4. Oblicz wyróżnik funkcji. Rozwiązanie. Odczytujemy ze wzoru funkcji wartości współczynników a,b,c.
Wzór na deltę to delta = b^2 – 4ac, gdzie a, b i c to współczynniki funkcji kwadratowej w postaci f(x) = ax^2 + bx + c. Jeśli Δ > 0, to równanie ma dwa rozwiązania rzeczywiste, które można obliczyć za pomocą wzoru: x1 = (-b – √Δ) / 2a x2 = (-b + √Δ) / 2a