Search results
Wzór na deltę. Delta nazywana jest inaczej wyróżnikiem trójmianu kwadratowego. To właśnie dzięki niej możemy obliczyć rozwiązania równania kwadratowego (o ile oczywiście istnieją!) lub wierzchołek paraboli. Poznaliście już, czym jest postać ogólna funkcji kwadratowej.
Korzystając z naszego kalkulatora wartości delty wg współczynników funkcji kwadratowej, Twój zadaniem jest wprowadzić trzy liczby a, b i c, a następnie klikając oblicz sprawdzić wartość delty. Kalkulator obliczy wartość na podstawie wzoru delty i przedstawi wynik wraz z punktami x1 oraz x2 na osi x.
Poznaj wzór na deltę i naucz się, jak stosować go do rozwiązywania równań kwadratowych. Przewodnik zawiera teorię, wzory na x1 i x2 oraz przykładowe zadania.
Funkcję kwadratową wyrażamy za pomocą wzoru: f (x) = ax 2 + bx + c. a, b, c to współczynniki, które należą do zbioru liczb rzeczywistych. Dodatkowo „a” nie może być równe 0. Delta to inaczej wyróżnik funkcji kwadratowej. =.
Deltę oblicza się przy użyciu wzoru przedstawionego w punkcie powyżej. Poniżej przedstawię kilka przykładów wraz z ich rozwiązaniami, w których będzie trzeba obliczyć deltę. Przykład 1: Oblicz deltę dla równania kwadratowego.
Wzór na deltę. Delta inaczej wyróżnik trójmianu kwadratowego. Mając funkcję kwadratową postaci: gdzie: a, b, c są współczynnikami funkcji kwadratowej i . Wzór na deltę wygląda następująco: Znając wartość delty możemy obliczyć miejsca zerowe funkcji kwadratowej lub wierzchołek paraboli.
Wzór na deltę jest następujący: = b2 −4⋅ a⋅c = b 2 − 4 ⋅ a ⋅ c. Delta służy najczęściej, żeby obliczać miejsca zerowe albo. wierzchołek funkcji kwadratowej. Przykład. Funkcja f jest określona wzorem f (x) =7x2 +2x−4 f (x) = 7 x 2 + 2 x − 4. Oblicz wyróżnik funkcji. Rozwiązanie. Odczytujemy ze wzoru funkcji wartości współczynników a,b,c.