Search results
Introduction to proofs: Identifying geometry theorems and postulates ANSWERS C congruent ? Explain using geometry concepts and theorems: 1) Why is the triangle isosceles? PR and PQ are radii of the circle. Therefore, they have the same length. A triangle with 2 sides of the same length is isosceles. 2) Why is an altitude? AB = AB (reflexive ...
1. If two lines are cut by a transversal so that alternate interior angles are (congruent, supplementary, complementary), then the lines are parallel. 2. If two lines are cut by a transversal so that same-side interior angles are (congruent, supplementary, complementary), then the lines are parallel. 3. If two lines are cut by a transversal so ...
Essential Question. For which of the theorems involving parallel lines and transversals is the converse true? Exploring Converses. Work with a partner. Write the converse of each conditional statement. Draw a diagram to represent the converse. Determine whether the converse is true. Justify your conclusion.
Independent Practice: PROOFS OF PARALLEL LINES NAME: DATE: PERIOD: Geometry Unit 3 - Reasoning & Proofs w/Congruent Triangles Page 167 For # 1-3, given a ‖ b, state the postulate or theorem that justifies each conclusion. 1. 1 is supplementary to 8 because given _____ 2. 4 5 2 7 because
If two lines are cut by a transversal such that corresponding angles are congruent, then the lines are parallel
I can prove theorems about identifying parallel lines. EXPLORE IT Determining Whether Converses Are True. Math Practice. Construct Arguments. When the converse of one of the statements is true, what can you conclude about the inverse? inverse? Work with a partner. Write the converse of each conditional statement.
18) Even if the lines in question #16 were not. Any value other than 8. Ideally 0 ≤ x ≤ 10. parallel, could. No, that would make the angles 189° and 206°. Create your own worksheets like this one with Infinite Geometry. Free trial available at KutaSoftware.com.