Search results
Introduction to proofs: Identifying geometry theorems and postulates ANSWERS C congruent ? Explain using geometry concepts and theorems: 1) Why is the triangle isosceles? PR and PQ are radii of the circle. Therefore, they have the same length. A triangle with 2 sides of the same length is isosceles. 2) Why is an altitude? AB = AB (reflexive ...
1. If two lines are cut by a transversal so that alternate interior angles are (congruent, supplementary, complementary), then the lines are parallel. 2. If two lines are cut by a transversal so that same-side interior angles are (congruent, supplementary, complementary), then the lines are parallel. 3. If two lines are cut by a transversal so ...
Essential Question. For which of the theorems involving parallel lines and transversals is the converse true? Exploring Converses. Work with a partner. Write the converse of each conditional statement. Draw a diagram to represent the converse. Determine whether the converse is true. Justify your conclusion.
GOAL 1. Prove that two lines are parallel. re parallel. You can use the following postulate and theorems to p. GOAL 2 Use properties of lines are parallel. parallel lines to solve real-life problems, such as proving that prehistoric mounds are parallel in Ex. 19. Why you should learn it. n Exa.
If two lines are cut by a transversal such that corresponding angles are congruent, then the lines are parallel
3.3 Proofs with Parallel Lines EXPLORE IT Work with a partner. Write the converse of each conditional statement. Determine whether the converse is true. Justify your conclusion. a. Corresponding Angles Theorem If two parallel lines are cut by a transversal, then the pairs of corresponding angles are congruent. 1 4 2 3 6 8 7 5 b. Alternate ...
18) Even if the lines in question #16 were not. Any value other than 8. Ideally 0 ≤ x ≤ 10. parallel, could. No, that would make the angles 189° and 206°. Create your own worksheets like this one with Infinite Geometry. Free trial available at KutaSoftware.com.