Search results
Cos 2x – czyli cosinus podwojonego kąta, zazwyczaj pojawia się w zadaniach z zakresu rozszerzonego z matematyki. Można go opisać za pomocą trzech wzorów : lub lub Dzięki temu, że mamy aż trzy wzory możemy wybrać, który z nich będzie nam najbardziej pasował do rozwiązania zadania.
Rozwiąż równanie w przedziale . Skorzystamy ze wzoru na cosinus sumy. Szkicujemy cosinusa. Z wykresu widać, że. Skorzystamy ze wzoru. Szkicujemy tangensa. Z wykresu łatwo odczytać, że jedynym rozwiązaniem jest (bo ). Jeżeli natomiast , to możemy obie strony równania podzielić przez i otrzymujemy równanie. Szkicujemy sinusa.
Rozwiązanie zadania z matematyki: Rozwiąż równanie cos 2x+2=3cos x...., Stopnia 1, 1203611 Największy internetowy zbiór zadań z matematyki Baza zawiera: 20667 zadań, 1916 zestawów, 35 poradników
Rozwiązuj zadania matematyczne, korzystając z naszej bezpłatnej aplikacji, która wyświetla rozwiązania krok po kroku. Obsługuje ona zadania z podstaw matematyki, algebry, trygonometrii, rachunku różniczkowego i innych dziedzin.
Rozwiąż równanie \[\cos^2x-\frac{2\sqrt{3}}{3}\sin x\cos x-\sin^2x=0\] w przedziale \([-\pi,\pi]\). Zapisz obliczenia.
Znajdziesz tutaj równania i nierówności trygonometryczne. To zadania z rozwiązaniami. Są tu zadania autorskie oraz maturalne na poziomie podstawowym i rozszerzonym z kilku ostatnich lat. Zadanie nr 1. Pokaż rozwiązanie zadania. Zadanie nr 2. Rozwiązać równanie: 1 − sin 2 x = cos x. Pokaż rozwiązanie zadania. Zadanie nr 3.
Tablice z wartościami funkcji trygonometrycznych dla kątów ostrych znajdują się pod tym linkiem. \sin^2 {\alpha }+\cos^2 {\alpha }=1. \begin {split} &\text {tg} {\alpha }=\frac {\sin {\alpha }} {\cos {\alpha}}\\ [12pt] &\text {ctg} {\alpha}=\frac {\cos {\alpha}} {\sin {\alpha}}\\ [12pt] &\text {tg} {\alpha}\cdot \text {ctg} {\alpha=1} \end {split}