Search results
Use the values in the IIW formula for carbon equivalent: CE = C + Mn/6 + (Cu + Ni)/15 + (Cr + Mo + V)/5 = 0.20 + 0.90/6 + 0 = 0.35. Visit our carbon equivalent calculator to calculate the CE value using other formulae.
- Welding Calculator
The lap joints can either be single transverse, i.e., single...
- Cryptocurrency Footprint
It’s nice to talk about the impact of bitcoin in all these...
- Meat Footprint Calculator
There are no strict safe limits here, but general good...
- Welding Calculator
Carbon equivalent formulae were originally developed to give a numerical value for a steel composition which would give an indication of a carbon content which would contribute to an equivalent level of hardenability for that steel.
The carbon equivalent is a measure of the tendency of the weld to form martensite on cooling and to suffer brittle fracture. When the carbon equivalent is between 0.40 and 0.60 weld preheat may be necessary. When the carbon equivalent is above 0.60, preheat is necessary, postheat may be necessary.
Due to widespread application of the carbon equivalent in Japan, the Japanese Welding Engineering Society (JWES) published its own carbon equivalent equation in 1973: CE = Wes. C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14 (2)
The carbon equivalent is a measure of the tendency of a material to form cold cracks depending on its chemical composition. Further explanations of the individual carbon equivalents (CET, CE, PCM, CEM, CEN) can be found here.
Equation: PCM = C + Si/30 + (Mn + Cu + Cr)/20 + Mo/15 + Ni/60 + V/10 + 5*B . CEM. The carbon equivalent CEM can only be used under the very limited conditions of the short cooling time range (2 to 6 s) and the narrow validity range of the chemical composition (C: 0.02 - 0.22, Si: 0.00 - 0.50, Mn: 0.40 - 2.10, Cu: 0.00 - 0.60, Cr: 0.00 - 0.50 ...
Several different methods of calculating the carbon equivalent exist. The most commonly used are listed below (all values in wt%): The two formulae specified in EN 1011-2: CE = C + 1 ⁄ 6 Mn + 1 ⁄ 5 (Cr + Mo + V) + 1 ⁄ 15 (Ni + Cu) CET = C + 1 ⁄ 10 (Mn + Mo) + 1 ⁄ 20 (Cr + Cu) + 1 ⁄ 40 Ni.