Search results
bitnet.cpp is the official inference framework for 1-bit LLMs (e.g., BitNet b1.58). It offers a suite of optimized kernels, that support fast and lossless inference of 1.58-bit models on CPU (with NPU and GPU support coming next).
18 wrz 2024 · BitNet is a special transformers architecture that represents each parameter with only three values: (-1, 0, 1), offering a extreme quantization of just 1.58 ( l o g 2 (3) log_2(3) l o g 2 (3)) bits per parameter. However, it requires to train a model from scratch.
28 lut 2024 · Recent research, such as BitNet, is paving the way for a new era of 1-bit Large Language Models (LLMs). In this work, we introduce a 1-bit LLM variant, namely BitNet b1.58, in which every single parameter (or weight) of the LLM is ternary {-1, 0, 1}.
BitNet b1.58 is based on the BitNet architecture, which is a Transformer that replaces nn.Linear with BitLinear. It is trained from scratch, with 1.58-bit weights and 8-bit activations.
29 mar 2024 · The differences between the reported numbers and the reproduced results are possibly variances from the training data processing, seeds, or other random factors. Evaluation. The evaluation pipelines are from the paper authors. Here is the commands to run the evaluation: pip install lm-eval==0.3.0.
29 lut 2024 · Unlike its predecessors, BitNet b1.58 is trained from the ground up, utilizing weights quantized to 1.58-bits and activations reduced to 8-bits. This approach significantly deviates from the standard full-precision formats typically seen in AI models.
29 lut 2024 · BitNet b1.58 emerges as a solution, utilizing 1-bit ternary parameters to dramatically lighten the load on computational resources while maintaining high model performance. This section will...