Search results
bitnet.cpp is the official inference framework for 1-bit LLMs (e.g., BitNet b1.58). It offers a suite of optimized kernels, that support fast and lossless inference of 1.58-bit models on CPU (with NPU and GPU support coming next).
18 wrz 2024 · BitNet is a special transformers architecture that represents each parameter with only three values: (-1, 0, 1), offering a extreme quantization of just 1.58 ( l o g 2 (3) log_2(3) l o g 2 (3)) bits per parameter. However, it requires to train a model from scratch.
28 lut 2024 · Recent research, such as BitNet, is paving the way for a new era of 1-bit Large Language Models (LLMs). In this work, we introduce a 1-bit LLM variant, namely BitNet b1.58, in which every single parameter (or weight) of the LLM is ternary {-1, 0, 1}. It matches the full-precision (i.e., FP16 or BF16) Transformer LLM with the same model size and ...
This repository not only provides PyTorch implementations for training and evaluating 1.58-bit neural networks but also includes a unique integration where the experiments conducted automatically update a LaTeX-generated paper.
29 lut 2024 · BitNet b1.58 emerges as a solution, utilizing 1-bit ternary parameters to dramatically lighten the load on computational resources while maintaining high model performance. This section will...
5 sie 2024 · When doubling the number of weights, we still reap a significant part of the memory savings of going from 16-bits to 1.58-bits, i.e., we need 2x 2-bit instead of 16-bit.
29 mar 2024 · Here is the commands to run the evaluation: pip install lm-eval==0.3.0. python eval_ppl.py --hf_path 1bitLLM/bitnet_b1_58-3B --seqlen 2048. python eval_task.py --hf_path 1bitLLM/bitnet_b1_58-3B \. --batch_size 1 \. --tasks \. --output_path result.json \. --num_fewshot 0 \. --ctx_size 2048.