Search results
bitnet.cpp is the official inference framework for 1-bit LLMs (e.g., BitNet b1.58). It offers a suite of optimized kernels, that support fast and lossless inference of 1.58-bit models on CPU (with NPU and GPU support coming next).
This repository not only provides PyTorch implementations for training and evaluating 1.58-bit neural networks but also includes a unique integration where the experiments conducted automatically update a LaTeX-generated paper.
28 lut 2024 · Recent research, such as BitNet, is paving the way for a new era of 1-bit Large Language Models (LLMs). In this work, we introduce a 1-bit LLM variant, namely BitNet b1.58, in which every single parameter (or weight) of the LLM is ternary {-1, 0, 1}.
This is a reproduction of the BitNet b1.58 paper. The models are trained with RedPajama dataset for 100B tokens. The hypers, as well as two-stage LR and weight decay, are implemented as suggested in their following paper. All models are open-source in the repo.
26 mar 2024 · BitNet b1.58 addresses this by halving activation bits, enabling a doubled context length with the same resources, with potential further compression to 4 bits or lower for 1.58-bit LLMs, a...
27 lut 2024 · Abstract. Recent research, such as BitNet [23], is paving the way for a new era of 1-bit Large Language Models (LLMs). In this work, we introduce a 1-bit LLM variant, namely BitNet b1.58, in which every single parameter (or weight) of the LLM is ternary {-1, 0, 1}.
29 mar 2024 · Here is the commands to run the evaluation: pip install lm-eval==0.3.0. python eval_ppl.py --hf_path 1bitLLM/bitnet_b1_58-3B --seqlen 2048. python eval_task.py --hf_path 1bitLLM/bitnet_b1_58-3B \ --batch_size 1 \ --tasks \ --output_path result.json \ --num_fewshot 0 \ --ctx_size 2048.