Search results
This lesson covers skills from the following lessons of the NCERT Math Textbook: (i) 6.1- Introduction, and (ii) 6.2 - Binomial theorem for positive integral indices
However, for higher powers like (98)5, (101)6, etc., the calculations become difficult by using repeated multiplication. This difficulty was overcome by a theorem known as binomial theorem. It gives an easier way to expand (a + b)n, where n is an integer or a rational number.
Explain the concept of the Binomial Theorem covered in Chapter 8 of NCERT Solutions for Class 11 Maths. The Binomial Theorem is the process of algebraically expanding the power of sums of two or more binomials.
binomial expression. For example, x + a, 2 x – 3y, 3 1 1 4, 7 5 x x x y − − , etc., are all binomial expressions. 8.1.2 Binomial theorem If a and b are real numbers and n is a positive integer, then (a + b) n =C 0 na n+ nC 1 an – 1 b1 + C 2 a – 2 b2 + ..... + nC r an – r br +... + nC n bn, where nC r = n r n r− for 0 ≤ r ≤ n
21 sie 2023 · Understanding Binomial Theorem An Important Algebra Concept In NCERT Class 11 Maths. By studying NCERT class 11 solution thoroughly, practicing relevant exercises, and revising key concepts, students can master this topic and apply it effectively in competitive exams.
☛ Download Class 11 Maths Chapter 8 NCERT Book. Topics Covered: The topics under class 11 maths NCERT solutions chapter 8 are using the binomial theorem to expand expressions and finding the general term as well as the middle term in an exponential expression.
However, for higher powers like (98)5, (101)6, etc., the calculations become difficult by using repeated multiplication. This difficulty was overcome by a theorem known as binomial theorem. It gives an easier way to expand (a + b)n, where n is an integer or a rational number.