Search results
12 mar 2021 · A p-value tells us the probability of obtaining an effect at least as large as the one we actually observed in the sample data. 2. An alpha level is the probability of incorrectly rejecting a true null hypothesis. 3. If the p-value of a hypothesis test is less than the alpha level, then we can reject the null hypothesis. 4.
Using P values and Significance Levels Together. If your P value is less than or equal to your alpha level, reject the null hypothesis. The P value results are consistent with our graphical representation. The P value of 0.03112 is significant at the alpha level of 0.05 but not 0.01.
P-values are the probability of obtaining an effect at least as extreme as the one in your sample data, assuming the truth of the null hypothesis. This definition of P values, while technically correct, is a bit convoluted.
Aby określić, czy obserwowany wynik jest statystycznie istotny, porównujemy wartości alfa i p-value. Pojawiają się dwie możliwości: Wartość p jest mniejsza lub równa alfa.
23 cze 2024 · Understanding the concepts of p-values and alpha levels is important for accurate hypothesis testing and statistical analysis. The alpha level serve as a predetermined threshold that helps researchers control the likelihood of making a Type I error, while the p-value is a calculated probability that helps determine the significance of the ...
26 wrz 2024 · P-value vs alpha matters because p-value reflects the likelihood of observed results, while alpha sets the boundary for rejecting the null hypothesis.
Wartość p, p-wartość, prawdopodobieństwo testowe (ang. p-value, probability value) – prawdopodobieństwo uzyskania wyników testu co najmniej tak samo skrajnych, jak te zaobserwowane w rzeczywistości (w próbie losowej z populacji), obliczone przy założeniu, że hipoteza zerowa jest prawdziwa.