Search results
Funkcja kwadratowa może być zapisana w trzech głównych postaciach: Postać ogólna: y = ax² + bx + c. Postać kanoniczna: y = a (x-p)² + q. Postać iloczynowa: y = a (x-x₁) (x-x₂) lub y = a (x-x₂)². Highlight: Postać kanoniczna funkcji kwadratowej jest szczególnie użyteczna przy określaniu wierzchołka paraboli.
Równania kwadratowe – Przykłady i zadania. Rozwiąż równanie kwadratowe i wykorzystaj najważniejsze wzory: Korzystanie z wymienionych wzorów nie jest jedyną metodą rozwiązywania równań kwadratowych. Niektóre przykłady można znacznie szybciej rozwiązać korzystając, np. ze wzorów skróconego mnożenia.
Poznaj wzór na deltę i naucz się, jak stosować go do rozwiązywania równań kwadratowych. Przewodnik zawiera teorię, wzory na x1 i x2 oraz przykładowe zadania.
Dla funkcji danej w postaci ogólnej f(x) = ax2 + bx + c liczymy deltę Δ =b2 − 4ac, a następnie: Jeżeli Δ> 0, to są dwa miejsca zerowe: x1 = −b − Δ−−√ 2a i x2 = −b + Δ−−√ 2a. Jeżeli Δ = 0, to jest dokładnie jedno miejsce zerowe: x1 = x2 = − b 2a. Jeżeli Δ <0, to nie ma miejsc zerowych.
Rozwiązania równań funkcji kwadratowej – wzór na deltę. Liczba rozwiązań zależy jej delty. Mając równanie kwadratowe dane wzorem ax2 + bx + c = 0 wyróżnik delta to: Δ = b2– 4ac.
Wzór na x1 i x2. Funkcja kwadratowa może mieć dwa miejsca zerowe, jedno miejsce zerowe bądź może mieć brak miejsc zerowych. Wszystko to zależy od tego, ile wynosi wyróżnik trójmianu kwadratowego, a więc po prostu zależy to od wartości delty.
Algorytm rozwiązywania. Rozwiązywanie równania kwadratowe postaci: 0. zaczynamy od policzenia delty (oznaczanej symbolem ∆ . Wzór na deltę jest następujący: ∆ 4. • Jeżeli ∆ 0. to mamy dwa rozwiązania: √∆.