Search results
Poznaj najważniejsze wzory związane z funkcją kwadratową. Postać ogólna funkcji kwadratowej: y = ax2 + bx + c. Postać kanoniczna funkcji kwadratowej: y = a(x − p)2 + q , gdzie p = −b 2a i q = −Δ 4a. Postać iloczynowa funkcji kwadratowej: jeśli Δ > 0 wówczas y = a(x −x1)(x −x2) , gdzie x 1 i x 2 są miejscami zerowymi.
- Funkcja kwadratowa
Funkcja kwadratowa i najważniejsze zadania do sprawdzianu!...
- Monotoniczność Funkcji Kwadratowej
Określ monotoniczność funkcji kwadratowej? Zbadaj, czy...
- Dziedzina I Zbiór Wartości Funkcji Kwadratowej
Co to jest dziedzina i zbiór wartości funkcji kwadratowej?...
- Miejsca Zerowe Funkcji Kwadratowej
Miejsca zerowe funkcji kwadratowej. 1) Jeśli masz postać...
- Nierówności kwadratowe
Funkcja kwadratowa – wzory; Wykres funkcji kwadratowej;...
- Równania Kwadratowe Niezupełne
Równania kwadratowe niezupełne. Postać ogólna funkcji...
- Wykres funkcji kwadratowej
Jak narysować wykres funkcji kwadratowej? Zobacz, jak w...
- Definicja funkcji kwadratowej
Definicja funkcji kwadratowej. Na początku działu...
- Funkcja kwadratowa
Wzór na x1 i x2. Funkcja kwadratowa może mieć dwa miejsca zerowe, jedno miejsce zerowe bądź może mieć brak miejsc zerowych. Wszystko to zależy od tego, ile wynosi wyróżnik trójmianu kwadratowego, a więc po prostu zależy to od wartości delty.
W tym miejscu zebrałem wszystkie najważniejsze wzory dotyczące funkcji kwadratowej. Postać ogólna funkcji kwadratowej to: f(x) = ax2 + bx + c. gdzie a, b, c ∈R i a ≠ 0. Wyróżnik Δ (delta) trójmianu kwadratowego ax2 + bx + c, to liczba: Δ =b2 − 4ac.
Poznaj wzór na deltę i naucz się, jak stosować go do rozwiązywania równań kwadratowych. Przewodnik zawiera teorię, wzory na x1 i x2 oraz przykładowe zadania.
Korzystając z naszego kalkulatora wartości delty wg współczynników funkcji kwadratowej, Twój zadaniem jest wprowadzić trzy liczby a, b i c, a następnie klikając oblicz sprawdzić wartość delty. Kalkulator obliczy wartość na podstawie wzoru delty i przedstawi wynik wraz z punktami x1 oraz x2 na osi x.
Δ > 0: dwa rozwiązania rzeczywiste. Δ = 0: jedno rozwiązanie rzeczywiste (podwójne) Δ < 0: brak rozwiązań rzeczywistych. Example: Dla równania x² + 2x - 3 = 0, delta wynosi: Δ = 2² - 4 (1) (-3) = 4 + 12 = 16, co oznacza, że równanie ma dwa rozwiązania rzeczywiste. Wzór na x1 x2 dla rozwiązań równania kwadratowego to:
Ze wzoru funkcji kwadratowej odczytaj: a) współrzędne wierzchołka paraboli będącej wykresem funkcji f . b) argument, dla którego funkcja f przyjmuje najmniejszą wartość.