Yahoo Poland Wyszukiwanie w Internecie

Search results

  1. Tablice z wartościami funkcji trygonometrycznych dla kątów ostrych znajdują się pod tym linkiem. \sin^2 {\alpha }+\cos^2 {\alpha }=1. \begin {split} &\text {tg} {\alpha }=\frac {\sin {\alpha }} {\cos {\alpha}}\\ [12pt] &\text {ctg} {\alpha}=\frac {\cos {\alpha}} {\sin {\alpha}}\\ [12pt] &\text {tg} {\alpha}\cdot \text {ctg} {\alpha=1} \end {split}

  2. Wzory matematyczne z objaśnieniami - Trygonometria: sinus i cosinus, tangens, cotangens, iloczyn tangensa i cotangensa, tangens i cosinus, cotangent i sinus, sinus sumy kątów, sinus różnicy kątów, cosinus sumy kątów, cosinus różnicy kątów, tangens sumy kątów, styczna różnicy kątów, sinus podwójnego kąta, cosinus podwójnego ...

  3. 16 paź 2024 · Dowiedz się, jak obliczać sinus, cosinus, tangens i cotangens oraz jak stosować te wartości trygonometryczne w zadaniach matematycznych.

  4. Definicje: Sinus (sin) kąta w trójkącie prostokątnym jest równy długości przyprostokątnej naprzeciw tego kąta do długości przeciwprostokątnej. Cosinus (cos) kąta w trójkącie prostokątnym jest równy długości przyprostokątnej przy tym kącie do długości przeciwprostokątnej.

  5. Twierdzenie cosinusów pozwala obliczyć długość boku trójkąta, w sytuacji gdy znamy długości dwóch pozostałych boków i kąt między nimi. Dla oznaczeń jak na powyższym rysunku zachodzi następujący wzór: \[c^2=a^2+b^2-2ab\cos \gamma \]

  6. W pierwszej ´cwiarte wszystkie sa¸ dodatnie sinus, cosinus, tangens i kotangens, w drugie tylko sinus jest dodatni, w trzecj tangens i cotangens sa¸ dodatnie , a w czwartej tylko cosinus jest dodatni.

  1. Ludzie szukają również