Search results
x^2: x^{\msquare} \log_{\msquare} \sqrt{\square} \nthroot[\msquare]{\square} \le \ge \frac{\msquare}{\msquare} \cdot \div: x^{\circ} \pi \left(\square\right)^{'} \frac{d}{dx} \frac{\partial}{\partial x} \int \int_{\msquare}^{\msquare} \lim \sum \infty \theta (f\:\circ\:g) f(x)
- Number Line
آلة حاسبة للتبسيط المثلّثاتيّ - تبسيط مثلّثاتيّ خطوة بخطوة
- Number Line
cos 2x = 1 – 2sin 2 x (Wzór ten (tak samo jak wszystkie poprzednie) możemy używać „w obie strony”) Powyższy wzór jest przydatny, gdy chcemy obliczyć sinus jakiegoś kąta, a mamy podany cosinus kąta podwojonego (tak jak w przykładzie poniżej).
Tablice z wartościami funkcji trygonometrycznych dla kątów ostrych znajdują się pod tym linkiem. \sin^2 {\alpha }+\cos^2 {\alpha }=1. \begin {split} &\text {tg} {\alpha }=\frac {\sin {\alpha }} {\cos {\alpha}}\\ [12pt] &\text {ctg} {\alpha}=\frac {\cos {\alpha}} {\sin {\alpha}}\\ [12pt] &\text {tg} {\alpha}\cdot \text {ctg} {\alpha=1} \end {split}
Gustlik: Najlepiej zrób tabelkę dla y=sinx, a potem podnieś wartości sinx do kwadratu. Na rysunku: y=sinx y=sin 2 x Możesz też skorzystać ze wzoru: cos2x=1−2sin 2 x 2sin 2 x=1−cos2x /:2 1−cos2x
3 lut 2024 · Wzór sumy cosinusów dla sumy kątów: \[ \cos(x) + \cos(y) = 2 \cos\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) \] Pozwala na wyrażenie sumy cosinusów dwóch kątów jako iloczynu dwóch funkcji trygonometrycznych.
Cos 2x – czyli cosinus podwojonego kąta, zazwyczaj pojawia się w zadaniach z zakresu rozszerzonego z matematyki. Można go opisać za pomocą trzech wzorów : lub lub Dzięki temu, że mamy aż trzy wzory możemy wybrać, który z nich będzie nam najbardziej pasował do rozwiązania zadania.
cos(2x) ≡ addition identity for cos(α+β)cos(x+x) ≡cos(x)cos(x)−sin(x)sin(x)≡ cos2(x)−sin2(x). Rozwiązuj zadania matematyczne, korzystając z naszej bezpłatnej aplikacji, która wyświetla rozwiązania krok po kroku. Obsługuje ona zadania z podstaw matematyki, algebry, trygonometrii, rachunku różniczkowego i innych dziedzin.