Search results
‘Ridge Push’ and ‘Slab Pull’ are thought to be the major forces driving the motion of oceanic plates. Ridge push is caused by the potential energy gradient from the high topography of the ridges. Slab pull is caused by the negative buoyancy of the subducting plate. Both forces act on one part of the volume of the plate, and are ...
ocean ridges is destroyed along converging margins; hence, if over the time frame of millions of years the rate of production of new lithosphere is balanced by its rate of destruction, then the Earth must maintain a constant size.
Plate Driving Forces: The forces that drive the motions of tectonic plates at the surface. Slab Pull: The force exerted by the weight of the subducted slab on the plate it is attached to. Ridge Push: The pressure exerted by the excess height of the mid-ocean ridge.
Ridge-Push Force. Let's cover a final force a subducting plate would experience, the ridge-push force. This force results from the elevation of oceanic ridges above the seafloor. This difference in height leads to pressure that 'pushes' the plate away from the ridge.
One side in the argument holds that the plates are only moved by the traction caused by mantle convection. The other side holds that traction plays only a minor role and that two other forces, ridge push and slab pull, are more important. Some argue that the real answer lies somewhere in between.
Ridge push: Hot buoyant mantle lifts and pushes the plates apart at mid-ocean ridges where magma solidifies to form new oceanic lithosphere. Gravity pulls the oceanic plates downhill from the ridges towards the deep ocean
29 gru 2014 · Definition. Plate Driving Forces: The forces that drive the motions of tectonic plates at the surface. Slab Pull: The force exerted by the weight of the subducted slab on the plate it is attached to. Ridge Push: The pressure exerted by the excess height of the mid-ocean ridge.