Search results
Essential Question. For which of the theorems involving parallel lines and transversals is the converse true? Exploring Converses. Work with a partner. Write the converse of each conditional statement. Draw a diagram to represent the converse. Determine whether the converse is true. Justify your conclusion.
What you should learn. GOAL 1. Prove that two lines are parallel. re parallel. You can use the following postulate and theorems to p. GOAL 2 Use properties of lines are parallel. parallel lines to solve real-life problems, such as proving that prehistoric mounds are parallel in Ex. 19. Why you should learn it. n Exa.
GO DIGITAL. I can prove theorems about identifying parallel lines. EXPLORE IT Determining Whether Converses Are True. Math Practice. Construct Arguments. When the converse of one of the statements is true, what can you conclude about the inverse? inverse? Work with a partner. Write the converse of each conditional statement.
1. If two lines are cut by a transversal so that alternate interior angles are (congruent, supplementary, complementary), then the lines are parallel. 2. If two lines are cut by a transversal so that same-side interior angles are (congruent, supplementary, complementary), then the lines are parallel. 3. If two lines are cut by a transversal so ...
PARALLEL LINE PROOFS. Peel & Stick Activity! Objective: To practice completing parallel line proofs. Reasons included: Definition of Congruence, Definition of Angle Bisector, Definition of Supplementary Angles, Congruent Supplements Theorem, Angle Addition Postulate, Subtraction Property of Equality, Substitution Property, Transitive Property, ...
These interactive notebook pages for parallel lines in geometry were so helpful for my student's notes. We put the foldables in their INBs and worked on activities afterwards. They didn't struggle with the equations of parallel and perpendicular lines because it was review from algebra.
Proofs and Postulates: Triangles and Angles Parallel Line Postulate: If 2 parallel lines are cut by a transversal, then their coresponding angles are congruent. A simple sketch can show the parallel line postulate. note: moving each point the same distance and direction will produce a parallel line (and a coresponding angle)