Search results
If two lines are cut by a transversal such that corresponding angles are congruent, then the lines are parallel
Introduction to proofs: Identifying geometry theorems and postulates ANSWERS C congruent ? Explain using geometry concepts and theorems: 1) Why is the triangle isosceles? PR and PQ are radii of the circle. Therefore, they have the same length. A triangle with 2 sides of the same length is isosceles. 2) Why is an altitude? AB = AB (reflexive ...
1. If two lines are cut by a transversal so that alternate interior angles are (congruent, supplementary, complementary), then the lines are parallel. 2. If two lines are cut by a transversal so that same-side interior angles are (congruent, supplementary, complementary), then the lines are parallel. 3. If two lines are cut by a transversal so ...
Independent Practice: PROOFS OF PARALLEL LINES NAME: DATE: PERIOD: Geometry Unit 3 - Reasoning & Proofs w/Congruent Triangles Page 167 For # 1-3, given a ‖ b, state the postulate or theorem that justifies each conclusion. 1. 1 is supplementary to 8 because given _____ 2. 4 5 2 7 because
Proving lines parallel worksheets have a variety of proving lines parallel problems that help students practice key concepts and build a rock-solid foundation of the concepts. These worksheets help students learn the converse of the parallel lines as well.
Write a paragraph proof of Theorem 7.2: If two parallel lines are cut by a transversal, then the pairs of same-side interior angles are supplementary. 1. 2. 3. 5. Write a two-column proof of the following.
Write the converse of each conditional statement. Determine whether the converse is true. Justify your conclusion. Corresponding Angles Theorem. If two parallel lines are cut by a transversal, then the pairs of corresponding angles are congruent. b. Alternate Altern Interior Angles Theorem.