Yahoo Poland Wyszukiwanie w Internecie

Search results

  1. Essential Question. For which of the theorems involving parallel lines and transversals is the converse true? Exploring Converses. Work with a partner. Write the converse of each conditional statement. Draw a diagram to represent the converse. Determine whether the converse is true. Justify your conclusion.

  2. Write the converse of each conditional statement. Determine whether the converse is true. Justify your conclusion. Corresponding Angles Theorem. If two parallel lines are cut by a transversal, then the pairs of corresponding angles are congruent. b. Alternate Altern Interior Angles Theorem.

  3. GOAL 1. Prove that two lines are parallel. re parallel. You can use the following postulate and theorems to p. GOAL 2 Use properties of lines are parallel. parallel lines to solve real-life problems, such as proving that prehistoric mounds are parallel in Ex. 19. Why you should learn it. n Exa.

  4. 1. If two lines are cut by a transversal so that alternate interior angles are (congruent, supplementary, complementary), then the lines are parallel. 2. If two lines are cut by a transversal so that same-side interior angles are (congruent, supplementary, complementary), then the lines are parallel. 3.

  5. Independent Practice: PROOFS OF PARALLEL LINES NAME: DATE: PERIOD: Geometry Unit 3 - Reasoning & Proofs w/Congruent Triangles Page 167 For # 1-3, given a ‖ b, state the postulate or theorem that justifies each conclusion. 1. 1 is supplementary to 8 because given _____ 2. 4 5 2 7 because

  6. 9-1 PROVING LINES PARALLEL. You have already studied many situations involving intersecting lines that lie in the same plane. When all the points or lines in a set lie in a plane, we say that these points or these lines are coplanar.

  7. PARALLEL LINE PROOFS. Peel & Stick Activity! Objective: To practice completing parallel line proofs. Reasons included: Definition of Congruence, Definition of Angle Bisector, Definition of Supplementary Angles, Congruent Supplements Theorem, Angle Addition Postulate, Subtraction Property of Equality, Substitution Property, Transitive Property, ...