Search results
Essential Question. For which of the theorems involving parallel lines and transversals is the converse true? Exploring Converses. Work with a partner. Write the converse of each conditional statement. Draw a diagram to represent the converse. Determine whether the converse is true. Justify your conclusion.
Write the converse of each conditional statement. Determine whether the converse is true. Justify your conclusion. Corresponding Angles Theorem. If two parallel lines are cut by a transversal, then the pairs of corresponding angles are congruent. b. Alternate Altern Interior Angles Theorem.
GOAL 1. Prove that two lines are parallel. re parallel. You can use the following postulate and theorems to p. GOAL 2 Use properties of lines are parallel. parallel lines to solve real-life problems, such as proving that prehistoric mounds are parallel in Ex. 19. Why you should learn it. n Exa.
Here are some examples of pairs of lines in a coordinate plane. a. 2 x + y = 2 These lines are not parallel b. 2 x + y = 2 These lines are coincident x − y = 4 or perpendicular.
1. If two lines are cut by a transversal so that alternate interior angles are (congruent, supplementary, complementary), then the lines are parallel. 2. If two lines are cut by a transversal so that same-side interior angles are (congruent, supplementary, complementary), then the lines are parallel. 3. If two lines are cut by a transversal so ...
3 sty 2018 · 3.3 Proofs with Parallel Lines. Write the converse of the following theorems: (In your notes from yesterday) Converse: (Important!) Proving the Alternate Interior Angles Converse. Write a two-column proof: Critical Thinking: If line L is parallel to line M, and Line M if parallel to line P then... Why? What is this called? Real World Example:
Prove and use theorems about parallel lines. Prove and use theorems about identifying parallel lines. Prove and use theorems about perpendicular lines. I can identify lines and planes.