Search results
Utilizing Parallel Lines in Proofs Reasons 1) Given 2) Given 3) If parallel lines cut by transversal, then altemate angles are conguent 4) Transitive property 5) If base angles are congruent, then triangle is isosceles AEK BED 1) 2) 5) ABE is isosceles BED EBA BAE BAE or Recognizing the altemate interior angles... Example: Given: Prove: Circle E
Essential Question. For which of the theorems involving parallel lines and transversals is the converse true? Exploring Converses. Work with a partner. Write the converse of each conditional statement. Draw a diagram to represent the converse. Determine whether the converse is true. Justify your conclusion.
1. If two lines are cut by a transversal so that alternate interior angles are (congruent, supplementary, complementary), then the lines are parallel. 2. If two lines are cut by a transversal so that same-side interior angles are (congruent, supplementary, complementary), then the lines are parallel. 3. If two lines are cut by a transversal so ...
Parallel Line Postulate: If 2 parallel lines are cut by a transversal, then their coresponding angles are congruent. A simple sketch can show the parallel line postulate. note: moving each point the same distance and direction will produce a parallel line (and a coresponding angle) Proof of parallel lines/alt. interior angles: IV.
I can construct parallel lines. GO DIGITAL. I can prove theorems about identifying parallel lines. EXPLORE IT Determining Whether Converses Are True. Math Practice. Construct Arguments. When the converse of one of the statements is true, what can you conclude about the inverse? inverse? Work with a partner.
Independent Practice: PROOFS OF PARALLEL LINES NAME: DATE: PERIOD: Geometry Unit 3 - Reasoning & Proofs w/Congruent Triangles Page 167 For # 1-3, given a ‖ b, state the postulate or theorem that justifies each conclusion. 1. 1 is supplementary to 8 because given _____ 2.
Parallel Lines Proof Worksheet. Write a 2 column or flow proof on your own paper. 1. Given: l || m; ∠2 ≅ ∠4 Prove: ∠4 ≅ ∠3. Name ____________________________. 2. Given: l || m; ∠1 ≅ ∠4 Prove: ∠3 ≅ ∠4. 4.