Search results
Tablice z wartościami funkcji trygonometrycznych dla kątów ostrych znajdują się pod tym linkiem. \sin^2 {\alpha }+\cos^2 {\alpha }=1. \begin {split} &\text {tg} {\alpha }=\frac {\sin {\alpha }} {\cos {\alpha}}\\ [12pt] &\text {ctg} {\alpha}=\frac {\cos {\alpha}} {\sin {\alpha}}\\ [12pt] &\text {tg} {\alpha}\cdot \text {ctg} {\alpha=1} \end {split}
- Tablice Wartości Funkcji Trygonometrycznych DLA Kątów Ostrych
\(\alpha \) \(0^\circ \) \(30^\circ \) \(45^\circ \)...
- Definicje Funkcji Trygonometrycznych W Trójkącie Prostokątnym
Graficzna metoda zapamiętania Aby obliczyć sinus kąta...
- Tablice Wartości Funkcji Trygonometrycznych DLA Kątów Ostrych
W tym nagraniu wideo omawiam typowe zadanie z trygonometrii, w którym mamy daną wartość jednej funkcji trygonometrycznej, a musimy policzyć wartości wszystkich pozostałych funkcji trygonometrycznych. Zadania tego typu można rozwiązywać na kilka różnych sposobów - np. korzystając z twierdzenia Pitagorasa, albo jedynki ...
Rozwiązuj zadania matematyczne, korzystając z naszej bezpłatnej aplikacji, która wyświetla rozwiązania krok po kroku. Obsługuje ona zadania z podstaw matematyki, algebry, trygonometrii, rachunku różniczkowego i innych dziedzin.
Rozwiąż równanie w przedziale . Skorzystamy ze wzoru na cosinus sumy. Szkicujemy cosinusa. Z wykresu widać, że. Skorzystamy ze wzoru. Szkicujemy tangensa. Z wykresu łatwo odczytać, że jedynym rozwiązaniem jest (bo ). Jeżeli natomiast , to możemy obie strony równania podzielić przez i otrzymujemy równanie. Szkicujemy sinusa.
Znajdziesz tutaj zadania z zastosowań wzorów trygonometrycznych. To zadania z rozwiązaniami. Są tu zadania autorskie oraz maturalne na poziomie podstawowym i rozszerzonym z kilku ostatnich lat. Zadanie nr 1. Oblicz \ (tg {75°}\). Pokaż rozwiązanie zadania. Zadanie nr 2. Oblicz \ (\cos {75°}\cos {10°}+\sin {70°}\cos {10°}\).
Rozwiązuj zadania matematyczne, korzystając z naszej bezpłatnej aplikacji, która wyświetla rozwiązania krok po kroku. Obsługuje ona zadania z podstaw matematyki, algebry, trygonometrii, rachunku różniczkowego i innych dziedzin.
cos 2x = 1 – 2sin 2 x (Wzór ten (tak samo jak wszystkie poprzednie) możemy używać „w obie strony”) Powyższy wzór jest przydatny, gdy chcemy obliczyć sinus jakiegoś kąta, a mamy podany cosinus kąta podwojonego (tak jak w przykładzie poniżej).